KOCIOŁ STALOWY WODNY CENTRALNEGO OGRZEWANIA
S6WC-13
S6WC-17
S6WC-20
S6WC-28
S6WC-36

DOKUMENTACJA TECHNICZNO RUCHOWA

Kotły grzewcze „OGNIWO”
• wysoka jakość,
• prostota budowy i łatwość obsługi,
• estetyczne wykonanie,
• długa żywotność,
• ekonomiczne grzanie,
• możliwość spalania paliw odnawialnych,
• unikalna konstrukcja kanałów konwekcyjnych,
• ruszt wodny + ruszt żeliwny mechaniczny,
• skuteczna wymiana ciepła,
• wieloletnie doświadczenie w projektowaniu i produkcji kotłów grzewczych,
• najkorzystniejsza relacja cena-jakość.

Nie eksperymentuj – instaluj kocioł marki „OGNIWO”
Kocioł S6WC wyposażony w regulator cieczowy
(regulator cieczowy – miarkownik - nie wchodzi w zakres dostawy kotła)
Kocioł S6WC z elektrycznym regulatorem temperatury i pompy wodnej
(regulator nie wchodzi w zakres dostawy kotła)
Kocioł S6WC z zespołem napowietrzeniowaniem
(zespół napowietrzenia nie wchodzi w zakres dostawy kotła)
Wstęp
Dokumentacja techniczno-ruchowa będąca równocześnie instrukcją obsługi i eksploatacji stanowi podstawowe źródło informacji dla użytkowników o budowie, zakresie stosowania i warunkach pracy kotła S6WC. Każdy użytkownik przystępujący do instalowania i eksploatacji kotła powinien dokładnie zapoznać się z otrzymaną dokumentacją techniczno-ruchową, sprawdzić jego stan techniczny i wyposażenie, sprawdzić kompletność i upewnić się, że kocioł nie uległ uszkodzeniu lub zdekompletowaniu podczas transportu i magazynowania. Ułatwi to prawidłowe podłączenie do instalacji centralnego ogrzewania i do przewodu kominowego oraz pozwoli na bezpieczne i bezawaryjne użytkowanie kotła.
Kocioł S6WC jest modelem, w którym wprowadzono pewne ulepszenia w porównaniu z poprzednimi. Dotyczy to w szczególności możliwości wyposażenia go w elektryczny regulator temperatury lub zespół napowietrzający wraz ze sterowaniem. W dalszym ciągu utrzymano cechy, które doskonale sprawdziły się w modelach wcześniejszych tj. charakterystyczną dla kotłów „Ogniwo” konstrukcję rusztu wodnego i kształt przewodów konwekcyjnych, które to cechy mają zasadniczy wpływ na poprawność wymiany ciepła oraz prostotę obsługi i czyszczenia kotła.

Spółdzielnia Metalowo-Odlewnicza „Ogniwo” wychodząc naprzeciw oczekiwaniom klientów w oparciu o wieloletnie doświadczenie oraz bezcenne uwagi użytkowników ciągle modernizuje i doskonali swoje produkty. Dlatego zastrzegamy sobie możliwość wprowadzania zmian konstrukcyjnych w kolejnych seriach produkcyjnych kotła.
1. Charakterystyka ogólna

1.1. Zastosowanie
Kocioł stalowy wodny centralnego ogrzewania S6WC zaliczany jest do kotłów niskotemperaturowych, co oznacza, że temperatura wody grzewczej w układzie nie może być wyższa niż 90°C. Przeznaczony jest do pracy w instalacjach wodnych centralnego ogrzewania systemu otwartego grawitacyjnych lub pompowych, posiadających zabezpieczenia zgodne z normami PN-91/B-02413 i BN-71/8864-27 dotyczących zabezpieczeń urządzeń ogrzewania wodnego systemu otwartego oraz naczyń wzbiorczych otwartych. Wprowadzenie zespołu napowietrzania umożliwia stosowanie kotła w warunkach pogorszonego ciągu kominowego, gdy eksploatacja kotła z konwekcyjnym odprowadzeniem spalin nie jest możliwa.

1.2. Paliwa
Paliwem podstawowym dla kotła S6WC jest węgiel kamienny o granulacji 30÷60 mm wg PN-82/G-97001-3. Dobre rezultaty daje stosowanie węgla kamiennego energetycznego o granulacji 5÷25 mm zwłaszcza w wersji kotła z napowietrzaniem. Mogą być ponadto stosowane paliwa zastępcze jak: węgiel brunatny, węgiel kamienny o drobnej i bardzo drobnej granulacji odpowiednio przygotowany, brykiety węglowo-koksowe, drewno opałowe i odpadowe oraz mieszanki wymienionych paliw w rozmaitych proporcjach. Spalanie miału węglowego w czystej postaci w zasadzie nie jest możliwe, gdyż ruszt kotła jest przystosowany do paliw o większej granulacji, ale w wersji kotła z napowietrznaniem domieszka miału może być znaczna. Przy stosowaniu paliw zastępczych należy liczyć się ze zmienią mocą cieplną kotła mniejszą lub większą, pogorszeniem sprawności cieplnej kotła oraz mniej lub bardziej pracochłonną obsługą kotła uzależnioną od rzeczywistej stałopalności.

1.3. Charakterystyka techniczna kotła S6WC

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Jednostka</th>
<th>Kocioł S6WC-13</th>
<th>Kocioł S6WC-17</th>
<th>Kocioł S6WC-20</th>
<th>Kocioł S6WC-28</th>
<th>Kocioł S6WC-36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moc cieplna znamionowa</td>
<td>kW</td>
<td>13</td>
<td>17</td>
<td>20</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>Powierzchnia grzewcza płaszcza wodnego</td>
<td>m²</td>
<td>1,1</td>
<td>1,5</td>
<td>2,0</td>
<td>2,6</td>
<td>3,0</td>
</tr>
<tr>
<td>Pojemność komory paliw</td>
<td>dm³</td>
<td>30</td>
<td>35</td>
<td>45</td>
<td>75</td>
<td>115</td>
</tr>
<tr>
<td>Pojemność wodna</td>
<td>dm³</td>
<td>32</td>
<td>38</td>
<td>43</td>
<td>53</td>
<td>68</td>
</tr>
<tr>
<td>Maksymalne ciśnienie robocze</td>
<td>MPa</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Wymiary obudowy**</td>
<td>mm x mm x mm</td>
<td>520 x 400 x 1010</td>
<td>565 x 400 x 1060</td>
<td>565 x 520 x 1060</td>
<td>605 x 520 x 1170</td>
<td>780 x 520 x 1300</td>
</tr>
<tr>
<td>Masa kotła</td>
<td>kg</td>
<td>190</td>
<td>210</td>
<td>260</td>
<td>290</td>
<td>390</td>
</tr>
<tr>
<td>Średnica zewnętrzna czopucha</td>
<td>mm</td>
<td>140</td>
<td>140</td>
<td>165</td>
<td>165</td>
<td>200</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Gwint króćców wyjściowego i powrotnego</td>
<td>cal</td>
<td>G1 ½</td>
<td>G1 ½</td>
<td>G1 ½</td>
<td>G2</td>
<td>G2 ½</td>
</tr>
<tr>
<td>Spiętrzenie dmuchawy*</td>
<td>Pa</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>345</td>
</tr>
<tr>
<td>Wydajność dmuchawy*</td>
<td>m³/h</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>255</td>
</tr>
<tr>
<td>Moc dmuchawy*</td>
<td>kW</td>
<td>0,026</td>
<td>0,026</td>
<td>0,026</td>
<td>0,026</td>
<td>0,08</td>
</tr>
<tr>
<td>Napięcie zasilania zespołu napowietrznania*</td>
<td>V</td>
<td>230 (50Hz)</td>
<td>230 (50Hz)</td>
<td>230 (50Hz)</td>
<td>230 (50Hz)</td>
<td>230 (50Hz)</td>
</tr>
<tr>
<td>Wymagany ciąg komina</td>
<td>mbar</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Minimalny przekrój komina</td>
<td>cm x cm</td>
<td>16 x 16</td>
<td>16 x 16</td>
<td>20 x 20</td>
<td>20 x 20</td>
<td>20 x 20</td>
</tr>
<tr>
<td>Powierzchnia użytkowa budynku</td>
<td>m²</td>
<td>120 ÷ 140</td>
<td>140 ÷ 180</td>
<td>160 ÷ 220</td>
<td>220 ÷ 260</td>
<td>280 ÷ 350</td>
</tr>
</tbody>
</table>

* w przypadku zastosowania zespołu napowietrznającego
** w wersji z napowietrzeniem szerokość kotła z dmuchawą i dźwignią rusztu zwiększa się o ok. 0,5m

2. Opis techniczny kotła

2.1. Płaszcz wodny

Płaszcz wodny kotła S6WC wykonany jest ze stali węglowej konstrukcyjnej określonego zastosowania o określonym składzie chemicznym. Dobór odpowiedniej stali gwarantuje wysoką jakość połączeń spawanych oraz niezbędną wytrzymałość płaszcza wodnego. Wewnętrzna powłoka płaszcza, mająca kontakt z gorącymi spalinami, wykonana jest z blachy o grubości 5mm, natomiast na zewnętrzną powłokę zastosowano blachę o grubości 4mm. Elementy płaszcza wodnego łączone są wzajemnie spoinami wykonanymi technologią spawania elektrycznego w osłonie gazów obojętnych. Niezbędną sztywność powłok płaszcza wodnego uzyskuje się poprzez odpowiednie ukształtowanie poszczególnych elementów oraz zastosowanie wzmocnień w postaci żeber i kołków. Kanały konwekcyjne i dymowe ukształtowane są w sposób umożliwiający łatwe i skuteczne czyszczenie ich przez drzwiczki wyczystne (górne).

2.2. Ruszt

Komora paleniskowa od dołu ograniczona jest rusztem. Ruszt składa się z rusztowin stałych i ruchomych ułożonych na przemian. Rusztowiny stałe wykonane z blachy stalowej mają postać rur o specjalnej konstrukcji. Rurowa budowa rusztowniz umożliwia chłodzenie ich wewnątrz wodą, co zapewnia długą żywotność kotła oraz skuteczną wymianę ciepła. Rusztowiny ruchome odlane z żeliwa szarego posiadają specjalny kształt pozwalający na efektywne odpopienie paleniska oraz...
doprowadzenie powietrza do całej strefy spalania. Rusztowny ruchome uszczelki są na osi, z którą tworzą mechanizm poruszany zewnętrzną dźwignią.

2.3. Drzwiczki

2.3.1. Drzwiczki wyczystne (górne)

Drzwiczki wyczystne znajdują się bezpośrednio poniżej pokrywy górnej kotła. Umożliwiają one dostęp do kanałów wewnątrz przewodu konwekcyjnego i dymowego dla ich okresowego czyszczenia i kontroli. Drzwiczki wykonane są z żeliwa szarego. Są one zaopatrzone w uszczelkę sznurową umieszczoną w specjalnym kanałku o kształcie dopasowanym do ramki wspawanej do płaszcza wodnego. Doszczelnianie następuje na skutek naciśnięcia w dół zacisku drzwiczek, którego krzywka współpracuje z zaczepem. Drzwiczki posiadają osłonę ogniową zabezpieczającą je przed nadmiernym wzrostem ich temperatury i niepotrzebnymi stratami ciepła.

2.3.2. Drzwiczki zasypowe (środkowe)

Zasyp paliwa do komory paleniskowej odbywa się przez środkowe drzwiczki zasypowe, umieszczone w przedniej ścianie kotła pod drzwiczkami wyczystnymi. Budowa drzwiczek zasypowych jest analogiczna jak drzwiczek wyczystnych. Posiadają również uszczelnienie i osłonę ogniową. Ponadto są one wyposażone w rozetkę umożliwiającą dopływ powietrza wtórnego do komory spalania.

2.3.3. Drzwiczki popielnika (dolne)

Drzwiczki popielnika umieszczone są od dołu przedniej ściany kotła. Umożliwiają one dostęp do dolnej części komory spalania po otwarciu rusztu pionowego oraz do popielnika. Zasada uszczelniania i zamykania drzwiczek popielnika jest taka sama jak poprzednich. W górnej części mają one zabudowaną osłonę ogniową, natomiast w dolnej znajduje się otwór prostokątny zamykany klapą ograniczającą dopływ powietrza pierwotnego do komory spalania. W kotle z napowietrzaniem klapa jest zablokowana przy pomocy specjalnej listwy i śruby.

2.4. Czopuch

Czopuch jest elementem łączącym kocioł z rurą dymową. Korpus czopucha jest odlewem żeliwnym. Z boku korpusu znajduje się okno rewizyjne zamykane pokrywą służącą do czyszczenia. Wewnątrz czopucha znajduje się przepustnica spalin, położenie, której można nastawiać przy pomocy pokrętła zewnętrznego. Położenie przepustnicy określają znaki „O” i „Z” na górnej powierzchni korpusu czopucha oraz nalepka na pokrywie korpusu kotła.
2.5. Obudowa

Kocioł obudowany jest z zewnątrz układem specjalnych oslon blaszanych, które nadają mu estetyczny wygląd, a jednocześnie mieszczą izolację cieplną kotła wykonaną z waty mineralnej.

2.6. Zespół napowietrzania

Zespół napowietrzania występuje w wersji kotła z napowietrzaniem i obejmuje dmuchawę, mikroprocesorowy regulator temperatury, kanał wlotowy powietrza oraz elementy złączne i uszczelniające. Dmuchawa i regulator nie są objęte gwarancją producenta kotła, lecz gwarancją producentów tych urządzeń. Podłączenia tych elementów do instalacji oraz nastawienia żądanych parametrów pracy należy dokonać zgodnie z instrukcjami ich producentów. Zespół napowietrzania nie wchodzi w zakres dostawy kotła i jest dostarczany na oddzielne zamówienie.

2.7. Regulator temperatury

Do sterowania kotła, który nie jest wyposażony w zespół napowietrzania może być stosowany regulator cieczowy lub elektryczny. Regulator nie jest przedmiotem dostawy (jest dostarczany na oddzielne zamówienie) i nie podlega gwarancji producenta kotła. Warunki gwarancji w tym przypadku są określone przez producenta regulatora.

3. Montaż kotła

Przed przystąpieniem do ustawienia i podłączenia kotła do instalacji kominowej i grzewczej należy dokładnie zapoznać się z niniejszą dokumentacją techniczno-ruchową, sprawdzić kompletność kotła oraz dokonać szczegółowych oględzin w celu wykluczenia śladów jakichkolwiek uszkodzeń.

Wszelkie prace związane z ustawieniem kotła, urządzeniem kotłowni, podłączeniem kotła do instalacji oraz ewentualne naprawy należy powierzać instalatorowi posiadającemu odpowiednią wiedzę, uprawnienia i doświadczenie. Właściwe wykonanie wspomnianych prac ma zasadnicze znaczenie dla bezpieczeństwa obsługi kotła, prawidłowej pracy kotła i instalacji centralnego ogrzewania oraz zadowolenia użytkownika.

3.1. Pomieszczenie kotłowni

Pomieszczenie kotłowni powinno odpowiadać wymaganiom normy PN-87/B-02411. Jednym z najważniejszych warunków, jakie powinno spełniać to pomieszczenie jest zapewnienie właściwej wentylacji. W szczególności powinno ono posiadać:
- kanał nawiewny (otwór w ścianie lub oknie) bez żaluzji o przekroju równym połowie przekroju komina, ale nie mniejszym niż 20cm x 20cm,
- kanał wywiewny usytuowany w miarę możliwości przy kominie z otworem wlotowym (bez żaluzji) pod stropem pomieszczenia o przekroju równym ¼ przekroju komina, ale nie mniejszym niż 14cm x 14cm.

Ustawienie kotła w kotłowni powinno spełniać wymagania normy jak wyżej w celu zapewnienia wygodnej i bezpiecznej obsługi kotła. Odległość prawej strony kotła od ściany powinna wynosić co najmniej 60cm w celu umożliwienia wymiany rusztu ruchomego w razie konieczności.

Rys. 1. Przykład podłączenia kotła do instalacji

3.2. Instalacja kominowa

Kanał kominowy powinien mieć przekrój wg p. 1.3. Kanał powinien być wewnątrz gładki i nie może mieć uskoków ani przewężeń. Komin powinien być wyprowadzony około 1m ponad powierzchnię dachu. Komin wykonany z blachy powinien być wyższy o około 20% niż komin murowany.

Czopuch kotła należy połączyć z kominem rurą z blachy stalowej o grubości 2 mm wznoszącą się lekko ku górze w kierunku od kotła do komina. Rura powinna być uszczelniona i wyizolowana z zewnętrzną watą mineralną. Średnica rury powinna umożliwiać jej nasadzenie na wylot czopucha.
3.3. Instalacja wodna

Instalacja wodna kotła powinna być wykonana zgodnie z normą PN-91/B-02413 oraz normą BN-71/8864-27. Odstępstwa od wymienionych norm niezależnie od zagrożeń bezpieczeństwa pracy i obsługi mogą być przyczynami poważnych awarii kotła, co może skutkować utratą gwarancji. Gdyby z jakichkolwiek powodów konieczne było zbudowanie instalacji zawierającej takie odstępstwa należy bezwzględnie przedstawić taką instalację do odbioru i przeglądów okresowych właściwemu terenowo inspektoratowi Urzędu Dozoru Technicznego. W tym ostatnim przypadku bardzo ważne jest absolutne wykluczenie możliwości wzrostu ciśnienia wody w układzie ponad wartość maksymalnego ciśnienia roboczego kotła nawet podczas próby szczelności układu.

3.4. Przygotowanie kotła do rozruchu

Kocioł na czas transportu ma dźwignię mechanizmu rusztu załączoną oddzielnie w związku z czym wymaga ona zamontowania. Dźwignię należy włożyć w wystającą końcówkę osi mechanizmu rusztu zwracając uwagę, aby otwór w czopie dźwigni trafiał dokładnie w otwór w końcówce osi mechanizmu. W otwór końcówki należy następnie włożyć śrubę łączącą oba elementy. Śruba powinna wejść swobodnie, aby nie uszkodzić gwintu. Po nałożeniu podkładki na wystający koniec śruby należy nakręcić nakrętkę kluczem tak mocno, aby połączenie było sztywne. Jeśli kocioł ma pracować z napowietrzeniem, przepustnica powietrza (klapa) drzwiczek popielnika powinna być zablokowana przy pomocy listwy (zajmującej się w wyposażeniu kotła do napowietrzania) i śruby. W tym celu należy odkręcić od tyłu drzwiczek dolnych nakrętkę, nałożyć listwę otworem na śrubę i nakręcić nakrętkę ponownie do oporu. Przy okazji blokowania zaleca się doszczelnienie klapy przy pomocy uszczelki prostokątnej znajdującej się w wyposażeniu do napowietrzania. Natomiast w celu umożliwienia sterowania kotła przy pomocy miarkownika (regulatora cieczowego) lub elektrycznego regulatory blokadę trzeba usunąć.

W wersji bez napowietrzenia w króciec w przedniej części pokrywy kotła należy wkręcić miarkownik, który użytkownik powinien zakupić we własnym zakresie. Po należytym (szczelnym) zamontowaniu miarkownika należy ustawić położenie jego ramienia, dopasować długość łańcuszka i połączyć łańcuszek z uchem klapy drzwiczek popielnika. Śruba regulacyjna w klapie drzwiczek popielnika powinna być wykręcona na tyle, aby klapa mogła się całkowicie zamknąć.

W wersji bez napowietrzenia można stosować zamiast miarkownika regulator elektryczny, który należy przymocować do osłony po prawej stronie wkręcając blacho-wkręty w przygotowane otwory. Linkę, po umieszczeniu końcówki pancerza w otworze kątownika oporowego na dolnych drzwiczkach, dołączyć do zaczepu klapy drzwiczek dolnych. Następnie wyregulować szczelne zamykanie klapy zgodnie z opisem montażu regulatora opracowanym przez jego producenta. W przypadku stosowania wymuszonego obiegu wody w instalacji grzewczej kabel przeznaczony do połączenia z pompą należy połączyć z odpowiednim gniazdem pomp wodnej.
W celu dołączenia dmuchawy (w wersji z napowietrzeniem) trzeba odkręcić pokrywę zaślepiającą wlot powietrza na dole bocznej ściany kotła, a następnie przymocować dmuchawę wraz z przyłączem zawierającym przepustnicę. Przyłącze powinno być ustawione tak, aby przepustnica opadała pod własnym ciężarem zasłaniając wlot powietrza w chwili wyłączenia dmuchawy. Stopień maksymalnego otwarcia przepustnicy ustawić śrubą motylkową w sposób praktyczny po rozpaleniu kotła. Mikroprocesorowy regulator temperatury należy przymocować do górnej pokrywy kotła w odległości ok. 20÷30 cm od przedniej krawędzi pokrywy górnej. Do króćca 1/2” na pokrywie kotła należy zamontować termometr kompletny, następnie silnie pociągnąć do góry za tarczę termometru w celu jej wyjęcia i w to miejsce włożyć czujnik temperatury, który jest połączony przewodem z mikroprocesorowym regulatorem temperatury. Czujnik powinien być zamocowany w gnieździe zgodnie z opisem zamieszczonym w instrukcji obsługi mikroprocesorowego regulatora temperatury. Wtyczka kabla od dmuchawy powinna być włożona w odpowiednio gniazdo regulatora na jego tylnej ścianie. W wersji kotła z napowietrzeniem rozetka doprowadzająca wtórne powietrze w drzwiczkach średowych powinna być cały czas zamknięta. W celu uniknięcia wydmuchiwania dymu z komory spalania zaleca się doszczelnienie rozetki przy pomocy uszczelki okrągłej znajdującej się w wyposażeniu do napowietrzenia. W przypadku stosowania wymuszonego obiegu wody w instalacji grzewczej instalator powinien wykonać połączenie elektryczne pompy z regulatorem. Kurek spustowy wody powinien być zamontowany do króćca ½” znajdującego się na tylnej ścianie kotła od dołu. Gwinty montowanych elementów hydraulicznych powinny być uszczelnione.

4. Rozruch i praca kotła

4.1. Napełnianie instalacji grzewczej wodą
Przed rozpaleniem kotła należy całą instalację centralnego ogrzewania wraz kotłem napełnić wodą. Naczynie zbiornikowe powinno być napełnione tak, aby woda pojawiła się w rurze sygnalizacyjnej. Woda użyta do napełnienia instalacji powinna być zmiękczona, co najmniej do wartości 2\(\text{o n.}\). Powinna mieć odczyn obojętny (pH=7). W celu napełnienia instalacji można użyć wody deszczowej. Ilość wody w układzie należy kontrolować. W prawidłowo wykonanej instalacji centralnego ogrzewania ubytki wody są niewielkie i nie zachodzi potrzeba częstego uzupełniania. Jeżeli ubytek wody jest zauważalny codziennie, należy niezwłocznie zlokalizować przyczynę i usunąć go, ponieważ częste uzupełnianie wody w instalacji jest szkodliwe zwłaszcza, gdy jest do dyspozycji wyłącznie woda twarda. Stosowanie wody twardej może doprowadzić do takiego zagromadzenia osadów wewnątrz płaszcza wodnego, że może nastąpić lokalne przegrzanie blachy płaszcza i uszkodzenie kotła nie mówiąc o pogorszeniu jego sprawności. Gdyby z jakiegokolwiek powodu podczas palenia w kotle zaistniał w nim brak wody nie wolno dla opanowania sytuacji dopuszczać do kotła świeżej wody. W zaistniałej sytuacji należy niezwłocznie wygasić kocioł przez wygarnięcie paliwa i żaru po...

4.2. Rozpalanie kotła

4.3. Palenie ciągłe

Podczas normalnej pracy kotła S6WC klapa drzwi drzewnych powinna być ustawiona na niewielki prześwit powiększany lub pomniejszany samoczynnie przez regulator spalania (miarkownik). Klapa może też być okresowo nastawiana ręcznie przy pomocy śruby regulacyjnej. Przepustnica spalin w czopuchu powinna być otwarta, ale stopień otwarcia powinno się ustalić praktycznie, gdyż zależy on od różnych czynników. Przed każdym uzupełnianiem paliwa i przed otwarcem drzwi drzewnych powinno być otworzyć na pełny prześwit przepustnicę spalin i klapę drzwi drzewnych. Przepustniki należy otwarć powoli i ostrożnie, pozwalając na swobodny wlot powietrza do komory spalania, bez zbliżania twarzy do otworu zwycięźcy. Po uzupełnieniu paliwa układ przepustnic przywrócić do stanu poprzedniego, przerusztować palenisko. Uzupełnianie paliwa w zależności od temperatury zewnętrznej należy wykonywać co kilka do kilkunastu godzin. W przypadku stosowania paliwa o drobnej granulacji jak groszek, miał energetyczny, nie zapelniać całego komory komorowej. Paliwo takie ma skłonności do spiekania powierzchniowego, zwłaszcza przy dużej zawartości popiołu i wilgoci, co utrudnia wypływ spalin ze strefy spalania. Zjawisko to nie występuje przy węgla o dużej granulacji, koksie opałowym, drewnie opałowym klasyfikowanym, brykietach oraz mieszankach tych paliw. Objawami utrudnionego wypływu spalin z komory spalania są sporadyczne wydmuchy gazów z komory spalania przez wszelkie
niszczelności spowodowane okresowym dopalaniem części lotnych paliwa. Co pewien czas zaleźnie od potrzeby należy poruszyć kilkadziesiąt dźwignią rusztu w celu odpopienienia paleniska.

Podczas normalnej pracy kotła S6WC z napowietrzaniem sterowanie automatyczne powinno być włączone, przepustnica spalin w czopuchu powinna być otwarta, stopień otwarcia powinno się ustalić praktycznie tak, aby spalanie było stabilne. Podczas nastawiania temperatury pracy kotła na wyświetlaczu należy mieć na uwadze zjawisko pewnej bezwładności działania, która polega na tym, że temperatura wody w kotle rośnie powyżej temperatury zadanej jeszcze przez pewien okres po wyłączeniu się dmuchawy. Dlatego maksymalna temperatura pracy kotła musi być tak nastawiona, aby nie dochodziło do wrzenia wody. Przed każdym uzupełnianiem paliwa i przed otwarciem drzwiczek zasypowych należy otworzyć na pełny prześwit przepustnicę spalin i wyłączyć sterowanie automatyczne dmuchawy. Drzwiczki należy otwierać powoli i ostrożnie, pozwalając na swobodny wlot powietrza do komory spalania, bez zbliżania twarzy do otworu zasypowego. Po uzupełnieniu paliwa układ przepustnicy przywrócić do stanu poprzedniego, przerusztować palenisko, włączyć sterowanie dmuchawy w cyklu automatycznym.

4.4. Czyszczenie kotła

Utrzymanie należytej sprawności cieplnej kotła wymaga okresowego czyszczenia. Do tego celu służy osprzęt kotłowy dołączany przy sprzedaży. Należy systematycznie usuwać sadzę i osady smolisty ze ścian komory spalania, kanałów przewodu konwekcyjnego, przewodów dymowych i czopucha. Drzwiczki wyczystne umożliwiają dostęp do przewodu konwekcyjnego i przewodów dymowych. Komorę spalania można oczyścić częściowo poprzez drzwiczki zasypowe i częściowo przez drzwiczki popielnika. Wyczyszczenie wnętrza czopucha możliwe jest po uprzednim odkręceniu pokrywy wyczystnej na jego boku. W przypadku wystąpienia na ruszcie zeskorupiałych produktów spalania w postaci szlaki, kamienia, żużła zachodzi niekiedy konieczność ręcznego oczyszczenia rusztu przy pomocy osprzętu, ponieważ ruszt mechaniczny bywa w takich przypadkach zablokowany. Próba siłowego odblokowania rusztu kończy się na ogólnym uszkodzeniem mechanizmu rusztu (pęknięcie rusztowniny, urwanie osi, zniszczenie dźwigni), co oznacza bardzo poważną awarię kotła. W zakres czyszczenia kotła wchodzi również okresowe, zależnie od potrzeb, usuwanie popiołu ze skrynki popielnika oraz czyszczenie dna kotła z resztek rozsypanego popiołu. **Nie powinno się dopuszczać do nadmiernego nagromadzenia popiołu w popielniku**, zwłaszcza w kotle z napowietrzaniem ponieważ może to spowodować zasypanie kanału dolotowego powietrza z dmuchawy i zablokowanie przepustnicy znajdującej się w tym kanale. Wszelkie czynności związane z czyszczeniem wewnętrznych komór kotła i czopucha powinny być wykonywane z zachowaniem należytej ostrożności po wygaszeniu i ostudzeniu kotła.
4.5. Zakłócenia pracy kotła

Problemy z poprawnym funkcjonowaniem kotła zdarzają się niezmiernie rzadko, jednak mogą wystąpić zakłócenia jego pracy na skutek błędnego wykonania instalacji bądź błędów w obsłudze.

<table>
<thead>
<tr>
<th>Objawy niesprawności</th>
<th>Przyczyny i środki zaradcze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedostateczny ciąg kominowy</td>
<td>Usunąć wszelkie nieszczelności przewodu kominowego, sprawdzić czy nie występują prześwity między kanałem kominowym a kanałami wentylacyjnymi budynku, sprawdzić uszczelnienie drzwiczek kotła.</td>
</tr>
<tr>
<td>Zbyt mała moc cieplna kotła</td>
<td>Niska kaloryczność paliwa, zbyt mała granulacja, duża zawartość w palowie popiołu, zanieczyszczeń lub wilgoci – gorsze odmiany paliwa można spalać w okresach mniejszego zapotrzebowania ciepła</td>
</tr>
<tr>
<td>Zbyt niska temperatura wody mimo intensywnego palenia</td>
<td>Sильно zanieczyszczenie komory spalania, kanałów konwekcyjnych i dymowych, kamień kotłowy wewnątrz płaszcza wodnego, niewłaściwie dobrany kocioł do powierzchni użytkowej, duże straty ciepła w budynku – wyczyścić kocioł wewnątrz, w przypadku kamienia kotłowego wymienić kocioł, docieplić budynek.</td>
</tr>
<tr>
<td>Mało intensywne spalanie (słabe naświetlenie popielnika)</td>
<td>Brak dopływu świeżej powietrza do kotłowni – sprawdzić otwory wentylacyjne (do spalenia 1 kg węgla potrzeba 6,5kg powietrza), awaria regulatora (nastawić lub wymienić regulator), awaria zespołu napowietrznia (sprawdzić nastawy mikroprocesorowego regulatora temperatury i dmuchawy w wersji S6WC z napowietrzaniem), przerusztować palenisko, usunąć nadmiar popiołu ze skrzynki popielnika, niedostateczny ciąg kominowy – postępować wg opisu powyżej.</td>
</tr>
<tr>
<td>Niewielki wyciek wody spod kotła, wilgoć wewnątrz kotła w okolicy kanałów dymowych</td>
<td>Zjawisko normalne podczas rozruchu kotła, nie musi oznaczać przecieków, jest to kondensat pary wodnej znajdującej się w powietrzu (wykrapała się na zewnętrznych ścianach płaszcza wodnego pod izolacją) lub w spalinach (wykrapała się za drzwiczkami wyczystnymi). Zjawisko ustępuje stopniowo samoistnie w miarę rozgrzewania się kotła.</td>
</tr>
<tr>
<td>Nadmierna temperatura kotła</td>
<td>Sprawdzić ilość wody w instalacji - gdyby z jakiegokolwiek powodu podczas palenia w kotle zaistniał w nim brak wody nie wolno dopuszczać do kotła świeżej wody – postępować wg p. 4.1. Sprawdzić</td>
</tr>
</tbody>
</table>
5. Zatrzymanie i konserwacja kotła

Po zakończeniu sezonu grzewczego należy odłączyć zasilanie elektryczne, jeśli występuje, usunąć z kotła resztki paliwa, popiół i starannie wyczyścić kocioł (nie czyścić blach do czystego metalu, pozostawić matowe). Nie opróżniać kotła z wody. Szczególowo przeglądać kocioł. Drobne usterki można usuwać we własnym zakresie. Poważniejsze naprawy należy powierzyć fachowcowi posiadającemu niezbędne uprawnienia i kwalifikacje. Jeśli kocioł jest na gwarancji, a usterki wynikają z winy producenta należy zgłosić kocioł do naprawy w ramach reklamacji. W okresie gwarancji wady takie są usuwane nieodpłatnie. Po upływie gwarancji serwis SMO „Ogniwo” może wykonać naprawę na koszt użytkownika. Po zakończeniu przeglądu i konserwacji należy otworzyć wszystkie drzwiczki i pozostawić w stanie otwartym do następnego uruchomienia kotła.

6. Zasady BHP przy obsłudze kotła

- Na przewodach hydraulicznych łączących płaszcz wodny kotła z naczyniem wzbiorczym nie wolno instalować żadnych zaworów ani innej armatury zmniejszającej przekrój wewnętrzny.
- Podczas próby ciśnieniowej instalacji nie wolno przekraczać maksymalnego ciśnienia pracy kotła 0,2 Mpa.
- Naczynie wzbiorcze, rura wzbiorcza, rura przelewowa i sygnalizacyjna nie powinny znajdować się całkowicie lub częściowo w pomieszczeniu, w którym temperatura może spadać poniżej 0°C.
- Przed rozpaleniem kotła upewnić się, że poziom wody w naczyniu wzbiorczym jest właściwy, a woda nie jest zamarznięta.
- Przed rozpaleniem kotła, a także po każdorazowym wejściu do kotłowni upewnić się, że wentylacja w kotłowni działa prawidłowo. W pomieszczeniu kotłowni nie wolno stosować wentylacji mechanicznej wywiewowej.
Pomieszczenie kotłowni należy utrzymywać w stanie uporządkowanym, w szczególności powinien być zawsze zapewniony dostęp do kotła z każdej strony, nie powinno się gromadzić w pobliżu kotła materiałów palnych lub niebezpiecznych.

Do rozpalania kotła nie wolno używać cieczy łatwopalnych.

Do obsługi kotła należy używać rękawic ochronnych.

W przypadkach, kiedy zachodzi konieczność otwarcia drzwiiczek należy zachować wzmożoną ostrożność. Szczególnie należy pamiętać, aby nie zbliżać twarzy do otwartych drzwiiczek rozpalonego kotła.

Podczas doraźnej kontroli albo podczas uzupełniania paliwa, przed otwarciem drzwiiczek zasypowych należy:
- ustawić przepustnicę czopucha na pełny prześwit,
- zwolnić zacisk drzwiiczek zasypowych i powoli je otwierać – drzwiiczki wyczystne powinny być w tym czasie zamknięte.

Nie wolno dopuszczać do zagotowania wody w kotle. Temperatura wody powinna zawsze być niższa niż 90°C.

Gdyby z jakiegokolwiek powodu podczas palenia w kotle zaistniał w nim brak wody nie wolno dopuszczać do kotła świeżej wody. W zaistnianej sytuacji postępować wg p. 4.1.

Do rozpalania i obsługi kotła nie wolno przystępuć przed szczegółowym zapoznaniem się z niniejszą dokumentacją techniczno-ruchową oraz przepisami dotyczącymi urządzenia i obsługi kotłowni niskotemperaturowej.

Obsługi kotła nie wolno powierzać osobom nieletnim albo osobom nietrzeźwym.

Wszelkie poważniejsze naprawy kotła należy powierzać fachowcom posiadającym odpowiednie kwalifikacje i uprawnienia.

Instalacja elektryczna dmuchawy, pompy wodnej, regulatora powinna być wykonana przez elektryka posiadającego stosowne uprawnienia zgodnie z zaleceniami instrukcji producentów tych urządzeń oraz zgodnie z przepisami i normami branżowymi w tym zakresie.

Przewody elektryczne powinny być ułożone tak, aby wykluczyć możliwość ich nadmiernego nagrzewania podczas obsługi i eksploatacji kotła.

Wszelkie uszkodzenia urządzeń elektrycznych i kabli powinny być natychmiast usuwane.

Nie wolno dopuszczać do zawilgocenia lub zalania kabli i instalacji elektrycznej kotła – gdyby taki przypadek zaistniał należy odłączyć zasilanie elektryczne do czasu dokładnego wysuszenia.

Nie wolno obsługiwać urządzeń elektrycznych i regulatora temperatury mokrymi rękami.

Nie wolno wprowadzać żadnych zmian konstrukcyjnych (ulepszeń) kotła i instalacji we własnym zakresie.
7. Zasady transportu

Wyposażenie do napowietrzania kotła, regulator elektryczny wraz z elementami mocującymi są dostarczane na oddzielne zamówienie w oddzielnych opakowaniach.

8. Warunki gwarancji

Na kocioł S6WC SMO „OGNIWO” udziela rocznej gwarancji natomiast na korpus kotła czteroletniej gwarancji liczonej od daty zakupu. Dmuchawa i regulator w wersji z napowietrzaniem oraz elektryczny regulator w wersji bez napowietrzania nie są objęte gwarancją producenta kotła, lecz gwarancją producentów tych urządzeń. W okresie gwarancyjnym wszelkie wady i usterki zawinione przez producenta usuwane są na jego koszt. Jeśli naprawa wadliwego kotła jest niemożliwa gwarancja przewiduje możliwość wymiany kotła na koszt producenta. Po upływie okresu gwarancyjnego producent zapewnia wykonanie każdej naprawy włącznie z remontem kapitalnym odpłatnie. Zależnie od zakresu naprawy może ona być wykonana u użytkownika w miejscu zamieszkania lub w zakładzie producenta. Zasadniczym warunkiem uznania reklamacji w okresie gwarancyjnym jest przestrzeganie zaleceń niniejszej dokumentacji techniczno-ruchowej.

9. Wyposażenie kotła

<table>
<thead>
<tr>
<th>Poz.</th>
<th>Wyszczególnienie</th>
<th>Ilość sztuk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kurek spustowy wody G1/2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Hak z uchwytem</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Ożóg z uchwytem</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Uchwyt z końcówką M12 do szczotki lub wycioru</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Szczotka</td>
<td>1</td>
</tr>
</tbody>
</table>
Rys. 2. Wyposażenie kotła

10. Uwagi końcowe