

Strojírenský zkušební ústav, s.p. (Engineering Test Institute, Public Enterprise)

Hudcova 424/56b, 621 00 Brno, Czech Republic

Page 1 of 24

TEST REPORT 39-9917

Product:

Hot-water boilers burning wood pellets

with automatic fuel supply

Type designation:

EG PELLET 10

EG PELLET 15 EG PELLET 40

Customer:

Zaklad Slusarski "GREN" sp.j

ul. Miarki 1B, 43-200 Pszczyna,

Poland

Manufacturer:

Zaklad Slusarski "GREN" sp.j

ul. Miarki 1B, 43-200 Pszczyna,

Poland

Person responsible for review and evaluation:

Ing. Stanislav Buchta

Report issue date:

2013-08-02

Distribution list:

1 copy to the Engineering Test Institute

1 copy to the Customer

Engineering Test Institute

Report No. 39-9917/T

Page 2 of 24

The tests have been conducted based on Order B-46835 of 2013-06-11, Contract B-46835/39 of 2013-06-27, and Amendment to the Contract of 2013-07-22.

I. Product description, intended use and mode of application

The hot-water boilers burning wood pellets with automatic fuel supply, type EG PELLET 10, EG PELLET 15, EG PELLET 40 (GB PELLET 10, GB PELLET 15, GB PELLET 40), are intended for heating of residential houses and similar buildings. The boilers are designed for burning of wood pellets.

The boiler assembly comprises the boiler body, boiler burner, feed screw and the fuel chamber of various construction designs (see the enclosed technical documentation). A rotary separator is fitted between the feed screw of the burner and any of the various types of the fuel chamber. The boiler body is equipped with automatic mechanism for cleaning of combustion product passages. The boiler body is a steel-sheet weldment, cylindrical in shape. The panel with control, regulation and safety elements is in the top part of the boiler. The boiler body is thermally insulated with mineral felt.

Further detailed descriptions of individual assembly groups are provided in the enclosed technical documentation to Task 39-9917.

II. Sample tested

The new measurement was realised based on new eletronic settings (combustion air) for minimal heat output for boilers EG PELLET 10, EG PELLET 15, EG PELLET 40 (GB PELLET 10, GB PELLET 15, GB PELLET 40).

Boiler output versions that are the subject of the proceedings:

Boiler output version	EKV No.	Place of testing
EG PELLET 10	0211.13.15137.000	
EG PELLET 15	0211.13.15137.000	SZU Brno
EG PELLET 40	0211.13.15138.000	

Visual inspection, testing and evaluation were carried out by Ing. Michal Havlů, Test Engineer, at the test station of SZU in Brno, in 07/2013. The tests were performed with the measurement and test equipment with valid calibration.

Engineering Test Institute

Report No. 39-9917/T

Page 3 of 24

III. Measuring and test equipment

No.	Description	Inventory number	Calibration valid until	Accuracy
1.	Combustion product analyser, Horiba, type 680 P	92-0004	Calibration prior to each measurement	see CRM 103000237769 see CRM 103000237770
2.	Weighing machine	02-2290	10/2015	see Calibration Sheet 6051-KL-H-0651-10
3.	Water meter, NW 20	02-1575	03/2015	see Calibration Sheet AKL-P/006/2009
4.	Data collection system	02-2241	12/2013	see Calibration Sheet 110002
5.	Moisture meter, ther- mometer	11-6258	11/2015	see Calibration Sheet 7630F/09
6.	Barometer	11-2541	11/2013	see Calibration Sheet 613-KL-K011-08
7.	Draught gauge	11-7275	01/2015	see Calibration Sheet 0144F/11
8.	Stop watch	99-0760	10/2015	see Calibration Sheet 2850E-07
9.	Calorimeter, IKA, type C 5000	02-2236	03/2015	± 0.12 MJ/kg
10.	Elemental analyser, Perkin Elmer, type 2400 CHNS	02-2107	03/2015	± 0.2 % rel.
11.	Gravimat, SHC 501	02-2328	12/2013	see Calibration Sheet 090177 (8,9), 090180
12.	Laboratory weighing machine	02-1458	06/2015	see Calibration Sheet 6051-KL-H376-09
13.	Weighing machine, Ohaus MB 45	02-2274	06/2015	see Calibration Sheet 6051-KL-H374-09
14.	Manometer	11-1985	02/2014	see Calibration Sheet 090162
15.	Prandtl tube, 0.3 m	ME 484	11/2015	see Calibration Sheet 5012-KL-RS090-09
16.	Psychrometer H 4220	92-0005	12/2013	see Calibration Sheet 090176

Engineering Test Institute

Report No. 39-9917/T

Page 4 of 24

IV. Results of tests and evaluation

				Evaluation	
No. Requirement		Technical standard, regulation applied	Source materi- als	Test	Evalua- tion
1.	Surface temperature test (1003*)	ČSN EN 303-5:2013 Art. 5.12, 5.16.4, 4.3.6	Pages 5 - 7	+	
2.	Test of heat output, input and efficiency(1004.1*) Test of combustion prod- uct temperature (1004.2*)	ČSN EN 303-5:2013 Art. 4.4.2, 4.4.3, 5.7, 5.8, 5.10 ČSN EN 303-5:2013 Art. 4.4.3	Pages 8 - 13	+	
3.	Combustion efficiency test – emissions (1005.1*)	ČSN EN 303-5:2013 Art. 4.4.7, 5.7.3, 5.7.4, 5.9, 5.10.4	Pages 14 - 15	+	
		ČSN EN 303-5:2013 Annex C, Deviation from Austria, C.2.2, C.2.3	Pages 16 - 17	+	
		ČSN EN 303-5:2013 Annex C, C.3 Deviation from Croatia	-	0	
		ČSN EN 303-5:2013 Annex C, Deviation from Denmark , C.4.1, C.4.2	Pages 18 - 19	+	
	Test of heat output, input and efficiency (1004.1*)	ČSN EN 303-5:2013 Annex C, Deviation from Germany, C.5.1, C.5.2	Pages 20 - 21	+	
4.	Combustion efficiency test – emissions (1005.1*)	ČSN EN 303-5:2013 Annex C C.6 Deviation from Switzerland	Pages 22 - 23	+	
		ČSN EN 303-5:2013 Annex C C.8 Deviation from Italy	-	0	

Note:

No.:

(**) Not a test

Evaluation:

+ Requirement fulfilled

- Requirement not fulfilled

x Not assessed

0 Not applicable

Engineering Test Institute

Report No. 39-9917/T

Page 5 of 24

Accredited test

1003* Test title: Surface temperature test

number:

ČSN EN 303-5:2013 Art. 5.12, 5.16.4, 4.3.6

Sample tested:

Test method:

EG PELLET 10, EG PELLET 15, EG PELLET 40

Measuring equipment used:

Chapter III - Measuring and test equipment

Test results:

Requirement	Requirement specification	Test evalua- tion	Note
Surface temperature The mean surface temperature shall be measured at nominal heat output. In order to do this, a minimum of 5 points on each boiler surface shall be measured. Under the same conditions, the critical temperatures (e.g. boiler doors, operating levers) shall be measured.	ČSN EN 303- 5:2013 Art. 5.12	+	
The surface temperature on the outside of the boiler (including the bottom and doors but not including the flue gas outlet and maintenance openings of natural draft boilers) shall not exceed the room temperature by more than 60 K when tested in accordance with 5.12. The requirement for the bottom is not applicable for instances when the manufacturer declares that the boiler is to be installed on a non-combustible base. When tested in accordance with 5.12, the surface temperature of operating levers and all parts which shall be touched by hand during operation of the boiler shall not exceed the room temperature by more than the following values: - 35 K for metals and similar materials; - 45 K for porcelain and similar materials.	ČSN EN 303- 5:2013 Art. 4.3.6	+	
Resistance to thermal conductance Temperature measurement shall be performed on the surface of the stoking device at the place next to the fuel line but within a maximum distance which shall be less than 1 m against the feeding direction from the inner wall of the combustion chamber. For boilers with integrated hopper, the temperature measurement shall be performed on the surface of the stoking device at the place next to the integrated hopper but within a maximum distance which shall be less than 1 m against the feeding direction from the inner wall of the combustion chamber. In addition, the highest surface temperature of the hopper shall be measured.	ČSN EN 303- 5:2013 Art. 5.16.4	+	

Engineering Test Institute

Report No. 39-9917/T

Page 6 of 24

<u>Measurement results</u>: EG PELLET 10, EG PELLET 15

Average temperatures of boiler walls, doors and covers (°C):				
Fuel type Pellets – C1				
Front wall	31.4			
Rear wall	32.3			
Right wall	30.8			
Left wall	34.0			
Upper wall	32.2			
Lower wall (a base was used, non-combustible material)	34.3			
Temperatures of control elements (°C):				
Ash-pan door handle - metal 35				
El. control panel – plastic	30			
Temperature of fuel chamber and stoking elements (°C):				
Inner face of fuel chamber	33			
Temperature of fuel line tube (screw feeder - flange)	54			

Engineering Test Institute

Report No. 39-9917/T

Page 7 of 24

Measurement results:

EG PELLET 40

Average temperatures of boiler walls, doors and covers (°C):				
Fuel type Pellets – C1				
Front wall	27.6			
Rear wall	30.1			
Right wall	24.5			
Left wall	30.4			
Upper wall	29.6			
Lower wall (a base was used, non-combustible material)	49.7			
Temperatures of control elements (°C):				
Ash-pan door handle - metal	35			
El. control panel – plastic	30			
Temperature of fuel chamber and stoking elements (°C):				
Inner face of fuel chamber	33			
Temperature of fuel line tube (screw feeder - flange)	54			

Measurement uncertainty:

2 °C for temperatures within the range of (0 ÷ 250)°C

Test evaluation:

The specified temperature rise values have not been exceeded.

Tested by:

Ing. Michal Havlů

Date: 07/2013

Reviewed by: Ing. Stanislav Buchta

Date:

07/2013

[&]quot;The above-specified extended measurement uncertainties are calculated as a factor of the measurement uncertainty and the extension coefficient, k=2, corresponding to the coverage certainty of 95% as regards standard classification. The uncertainties do not reflect the impact of sample taking and lack of homogeneity. The standard uncertainty was determined in accordance with Document EA 4/02."

1004.2*

Engineering Test Institute

Report No. 39-9917/T

Page 8 of 24

Accredited test number:

Test method:

1004.1* Test title:

Test of heat output, input and efficiency Test of combustion product temperature

ČSN EN 303-5:2013

Art. 4.4.2, 4.4.3, 5.7 to 5.10

Sample tested: EG PELLET 10, EG PELLET 15, , EG PELLET 40,

Measuring equipment used: Chapter III - Measuring and test equipment

Test results:

Average measured and calculated values (solid fuels):

Test:		1.
Boiler type:		EG PELLET 10
Output tested:		Minimum
Fuel type:		Pellets - C1
Combustion period, (manual/automatic) stoking		Minimally 6 hours
Nominal heat output (specified by manufacturer)	[kW]	10
Flue gas temperature	[°C]	64.5
Fuel mass added	[kg/hour]	0.68
Flow temperature	[°C]	80.0
Return temperature	[°C]	72.7
Temperature of the entering cold water	[°C]	21.1
Cooling water flow rate	[m3/hour]	0.0366
Draught	[Pa]	7
Ambient temperature	[°C]	29
Relative air humidity	[%]	32.1
Barometric pressure	[kPa]	99.3

Fuel analysis:

Test (period of burning) :		l.
Oxygen, O ₂	[%]	11.77
Carbon dioxide CO ₂	[%]	9.08
Carbon monoxide CO	[ppm]	196
Higher hydrocarbons THC/OGC	[ppm]	9
Nitrogen oxides NOx	[ppm]	62

Engineering Test Institute

Report No. 39-9917/T

Page 9 of 24

Test results:

Auxiliary combustion values (solid fuels):

Test (period of burning):		l.
Stoichiometric oxygen volume	[m³/kg]	0.877
Stoichiometric air volume	[m³/kg]	4.176
Stoichiometric volume of dry combustion products	[m³/kg]	4.178
Maximum content of CO ₂	[%]	20.99
Stoichiometric air multiple	[-]	2.27
Volume of dry combustion products, actual	[m³/kg]	9.646
Content of H ₂ O in combustion air	[m³/kg]	0.125
Content of H ₂ O in combustion products	[m³/kg]	0.756

Calculated values - thermal overview

Test (period of burning) :		1.
Loss of sensible heat of combustion products	[%]	2.8
Loss of gas underburning	[%]	0.2
Loss of mechanical underburning	[%]	0.4
Loss of heat transfer into environment	[%]	6.1
Total loss	[%]	9.4
Heat input	[kW]	3.3
Heat output	[kW]	3.0
Uncertainty of determining heat output	[kW]	0.1
Efficiency – direct method	[%]	90.3
Output / nominal output	[%]	29.8

At minimal heat output, when burning **pellets – C1**, the boiler efficiency meets the requirements applicable to **Class 5** as per ČSN EN 303-5:2013, Fig. 1.

The measured heat output is within the \pm 8% tolerance;

Boiler Class 5;

Test evaluation: When burning wood pellets, the period of burning is more than 6 hours;

The minimum heat output is less than 30% of nominal heat output.

Engineering Test Institute

Report No. 39-9917/T

Page 10 of 24

Average measured and calculated values (solid fuels):

Test:		1.
Boiler type:		EG PELLET 15
Output tested:		Minimum
Fuel type:		Pellets - C1
Combustion period, (manual/automatic) stoking		Minimally 6 hours
Nominal heat output (specified by manufacturer)	[kW]	10
Flue gas temperature	[°C]	64.5
Fuel mass added	[kg/hour]	0.68
Flow temperature	[°C]	80.0
Return temperature	[°C]	72.7
Temperature of the entering cold water	[°C]	21.1
Cooling water flow rate	[m3/hour]	0.0366
Draught	[Pa]	7
Ambient temperature	[°C]	29
Relative air humidity	[%]	32.1
Barometric pressure	[kPa]	99.3

Fuel analysis:

Test (period of burning) :		1.
Oxygen, O ₂	[%]	11.77
Carbon dioxide CO ₂	[%]	9.08
Carbon monoxide CO	[ppm]	196
Higher hydrocarbons THC/OGC	[ppm]	9
Nitrogen oxides NOx	[ppm]	62

Auxiliary combustion values (solid fuels):

Test (period of burning) :		l.
Stoichiometric oxygen volume	[m³/kg]	0.877
Stoichiometric air volume	[m³/kg]	4.176
Stoichiometric volume of dry combustion products	[m³/kg]	4.178
Maximum content of CO ₂	[%]	20.99
Stoichiometric air multiple	[-]	2.27
Volume of dry combustion products, actual	[m³/kg]	9.646
Content of H ₂ O in combustion air	[m³/kg]	0.125
Content of H₂O in combustion products	[m³/kg]	0.756

Engineering Test Institute

Report No. 39-9917/T

Page 11 of 24

Calculated values - thermal overview

Test (period of burning) :		l.
Loss of sensible heat of combustion products	[%]	2.8
Loss of gas underburning	[%]	0.2
Loss of mechanical underburning	[%]	0.4
Loss of heat transfer into environment	[%]	6.1
Total loss	[%]	9.4
Heat input	[kW]	3.3
Heat output	[k W]	3.0
Uncertainty of determining heat output	[kW]	0.1
Efficiency – direct method	[%]	90.3
Output / nominal output	[%]	19.8

At minimal heat output, when burning pellets - C1, the boiler efficiency meets the requirements applicable to Class 5 as per ČSN EN 303-5:2013, Fig. 1.

The measured heat output is within the \pm 8% tolerance;

Boiler Class 5;

Test evaluation: When burning wood pellets, the period of burning is more than 6 hours;

The minimum heat output is less than 30% of nominal heat output.

Test results:

Average measured and calculated values (solid fuels):

Test:		l.
Boiler type:	EG PELLET 40	
Output tested:		Minimum
Fuel type:		Pellets - C1
Combustion period, (manual/automatic) stoking		Minimally 6 hours
Nominal heat output (specified by manufacturer)	[kW]	40
Flue gas temperature	[°C]	79.0
Fuel mass added	[kg/hour]	2.470
Flow temperature	[°C]	76.3
Return temperature	[°C]	57.6
Temperature of the entering cold water	[°C]	19.1
Cooling water flow rate	[m3/hour]	0.1640
Draught	[Pa]	7
Ambient temperature	[°C]	26.0
Relative air humidity	[%]	40.6
Barometric pressure	[kPa]	98.9

Engineering Test Institute

Report No. 39-9917/T

Page 12 of 24

Fuel analysis:

Test (period of burning) :		l.
Oxygen, O ₂	[%]	10.42
Carbon dioxide CO ₂	[%]	10.18
Carbon monoxide CO	[ppm]	286
Higher hydrocarbons THC/OGC	[ppm]	8
Nitrogen oxides NOx	[ppm]	91

Auxiliary combustion values (solid fuels):

Test (period of burning) :		1.
Stoichiometric oxygen volume	[m³/kg]	0.877
Stoichiometric air volume	[m³/kg]	4.176
Stoichiometric volume of dry combustion products	[m³/kg]	4.178
Maximum content of CO ₂	[%]	20.99
Stoichiometric air multiple	[-]	1.98
Volume of dry combustion products, actual	[m³/kg]	8.594
Content of H₂O in combustion air	[m ³ /kg]	0.115
Content of H₂O in combustion products	[m³/kg]	0.746

Calculated values - thermal overview

Test (period of burning) :		1.
Loss of sensible heat of combustion products	[%]	3.8
Loss of gas underburning	[%]	0.2
Loss of mechanical underburning	[%]	0.4
Loss of heat transfer into environment	[%]	1.8
Total loss	[%]	6.1
Heat input	[kW]	12.0
Heat output	[kW]	11.3
Uncertainty of determining heat output	[kW]	0.5
Efficiency – direct method	[%]	93.4
Output / nominal output	[%]	28.1

At minimal heat output, when burning **pellets – C1**, the boiler efficiency meets the requirements applicable to **Class 5** as per ČSN EN 303-5:2013, Fig. 1.

The measured heat output is within the \pm 8% tolerance;

Boiler Class 5;

Test evaluation:

When burning wood pellets, the period of burning is more than 6 hours;

The minimum heat output is less than 30% of nominal heat output.

Engineering Test Institute

Report No. 39-9917/T

Page 13 of 24

Fuel analysis

Fuel type	Pellets – C1							
Analytical indicator	Symbol	Unit	Value	Uncertainty				
Heat of combustion	Qs	[MJ/kg]	19.71	0.14				
Caloric value	Q_{j}	[MJ/kg]	18.14	0.14				
All water in original condition	W^{r}_{t}	[% by weight]	5.16	0.01				
Ash	Α	[% by weight]	0.46	0.02				
Carbon	С	[% by weight]	49.07	0.25				
Hydrogen	Н	[% by weight]	6.63	0.10				
Nitrogen	N	[% by weight]	0.16	0.10				
Sulphur	S	[% by weight]	0.011	0.001				
Chlorine	Cl	[% by weight]	0.015	0.002				
Oxygen – calculation for 100%	0	[% by weight]	38.49					
Conversion factor f _{emis} for emissions in [mg/m³] to [mg/MJ]	f _{emis}	[-]	0.26077					

Note: Sample in original condition

Measurement uncertainty: Specified in Measurement results

"The above-specified extended measurement uncertainties are calculated as a factor of the measurement uncertainty and the extension coefficient, k=2, corresponding to the coverage certainty of 95% for standard classification. The uncertainties do not reflect the impact of sample taking and lack of homogeneity. The standard uncertainty was determined in accordance with Document EA 4/02".

Tested by:

Ing. Michal Havlů

07/2013 Date:

Reviewed by: Ing. Stanislav Buchta

Date:

07/2013

v 3.00

Engineering Test Institute

Report No. 39-9917/T

Page 14 of 24

Accredited test

1005.1* Test title: Combustion efficiency test - emissions

number:

Test method: ČSN EN 303-5:2013

Art. 4.4.7, 5.7.3, 5.7.4, 5.9, 5.10.4

Sample tested:

EG PELLET 10, EG PELLET 15, EG PELLET 40

Measuring equipment used:

Chapter III - Measuring and test equipment

Requirement	Requirement specification	Test evaluation	Note
Emission limits Combustion shall be of low-emission. This requirement shall be satisfied if the emission values shown in Table 6 are not exceeded when operating at nominal heat output or, in the case of boilers with heat output range, when operating at nominal heat output and minimum heat output, in accordance with 5.7, 5.9 and 5.10.	ČSN EN 303- 5:2013 Art. 4.4.7	+	

Table 6

		Nominal heat		Emission limits									
Stoking Fuel	Fuel	output		CO			OGC/THC		Dust				
Stoking	ruei		Class	Class	Class	Class	ng/m³ at 10% Class	Class	Class	Class	Class		
		kW	3	4	5	3	4	5	3	4	5		
Manual	Biogenic	≤ 50	5000			150							
		> 50 ≤ 150	2500			100			150	- 75			
		> 150 ≤ 500	1200	4000	700	100	50				60		
	Fossil	≤ 50	5000	1200	700	150		30	125		60		
		> 50 ≤ 150	2500			100							
		> 150 ≤ 500	1200			100							
Automatic	Biogenic	≤ 50	3000			100			150				
		> 50 ≤ 150	2500			80							
		> 150 ≤ 500	1200	1000	500	80							
	Fossil	≤ 50	3000	1000	500	100	30	20	125	60	40		
		> 50 ≤ 150	2500			80							
		> 150 ≤ 500	1200			80							

NOTE 1: The dust values in this Table are based on the experience of the gravimetric filter method. The method used needs to be referred to in the test report. The particulate matter emission measured according to this European Standard does not include condensable organic compounds which may form additional particulate matter when the flue gas is mixed with ambient air. The values are therefore not directly comparable with values measured by dilution tunnel methods. Neither can they be directly translated into ambient air particulate concentrations.

NOTE 2: Additional test methods and emission limits which apply in some countries are given in the A-Deviations in Annex C.

^a Referred to dry exit flue gas, 0 °C, 1013 mbar.

b Boilers of class 3 for type E-fuels according to 1.2.1 or e-fuels according to 1.2.3 in this Table and marked with the classification E-fuels and e-fuels do not need to fulfil the requirements for the dust emissions. The actual value shall be stated in the technical documentation and shall not exceed 200 mg/m3 at 10 % O2.

Engineering Test Institute

Report No. 39-9917/T

Page 15 of 24

Measurement results: EG PELLET 10 - Pellets - C1

					Aver	age value	es			
Boiler			Meas	ured values	Converted values O ₂ =10%					
output	O ₂	CO ₂	CO	OGC/THC		Dust		OGC/THC		Dust
	[%]	[%]	[ppm]	[ppm]	[ppm]	[mg/m ³]	[mg/m ³]	[mg/m ³]	[mg/m³]	[mg/m³]
Minimum	11.77	9.08	196	9	62	11	292	17	152	13

Test evaluation:

EG PELLET 10 (Pellets - C1) meets at minimum heat output the emission requirements for Class 5, as per ČSN EN 303-5:2013 Table 6.

Measurement results: EG PELLET 15 - Pellets - C1

					Aver	age value	es			
Boiler			Meas	ured values	Converted values O ₂ =10%					
output	O ₂ [%]	CO ₂ [%]	CO [ppm]	OGC/THC [ppm]	NO _x [ppm]	Dust [mg/m³]		OGC/THC [mg/m ³]		Dust [mg/m³]
Minimum	11.77	9.08	196	9	62	11	292	17	152	13

Test evaluation:

EG PELLET 15 (Pellets - C1) meets at minimum heat output the emission requirements for Class 5, as per ČSN EN 303-5:2013 Table 6.

Measurement results: EG PELLET 40 - Pellets - C1

		***************************************			Aver	age value	es			
Boiler			Meas	ured values	Converted values O ₂ =10%					
output	O ₂	CO2	CO	OGC/THC	NOx	Dust		OGC/THC	NO_x	Dust
Jacpac	[%]	[%]	[ppm]	[ppm]	[ppm]	[mg/m ³]	[mg/m ³]	[mg/m³]	[mg/m³]	[mg/m³]
Minimum	10.42	10.18	286	8	91	27	371	14	193	28

Test evaluation:

EG PELLET 40 (Pellets - C1) meets at minimum heat output the emission requirements for Class 5, as per ČSN EN 303-5:2013 Table 6.

Tested by:

Ing. Michal Havlů

07/2013 Date:

Signed:

Reviewed by: Ing. Stanislav Buchta

Date:

07/2013

1005.1*

Engineering Test Institute

Report No. 39-9917/T

Page 16 of 24

Accredited test number:

1004.1* Test title:

Test of heat capacity, input and efficiency

Combustion efficiency test - emissions

ČSN EN 303-5:2013

Annex C,

Deviation from Austria, C.2.2, C.2.3

Sample tested:

Test method:

EG PELLET 10, EG PELLET 15, EG PELLET 40

Measuring equipment used:

Chapter III - Measuring and test equipment

Test results:

Requirement		Requirement	Test evaluation
Requirement		specification	
Boiler efficiency for nominal heat output	eat output and minimum		Pellets – C1
Boiler	Minimum efficiency		
Heating boilers for solid fuels	75 %		+
a) manually loaded		ČSN EN 303-	
up to 10 kW	79 %	5:2013	
>10 to 200 kW	(71.3 + 7.7 log Pn) %	Annex C,	
>200 kW	89 %	Deviation from	
a) automatically loaded		Austria, C.2.2	
up to 10 kW	80 %		+
>10 to 200 kW	(72.3 + 7.7 log Pn) %		+
>200 kW	90 %		
NOTE Pn is the nominal heat	output (Qn in this standard)		

Require	ment		Requirement specification	Test evaluation			
Emissio	n limits						
Small bu	irners used for	solid fuels a	utomatically	loaded			
		Emissior mg/N			Pellets – C1		
Parameter	Wooden pellets Room heaters	Wooden pellets Central heaters	Other wooden fuels	Other stand- ardised biogenous fuels	ČSN EN 303- 5:2013 Annex C,		
CO	500°	250 ^a	250 ª	500 °	Deviation from		
NO _x	150	150	150	300	Austria, C.2.3	+	
OGC/THC	30	30	30	30			
Dust	50	40	50	60			

Measurement results: EG PELLET 10 - Pellets - C1

Boiler output	Minimum efficiency	Measured efficiency	
Minimum	80.0	90.3	

Engineering Test Institute

Report No. 39-9917/T

Page 17 of 24

Measurement results: EG PELLET 15 - Pellets - C1

Boiler output	Minimum efficiency	Measured efficiency
Minimum	81.4	90.3

Measurement results: EG PELLET 40 - Pellets - C1

Boiler output	Minimum efficiency	Measured efficiency	
Minimum	84.6	93.4	

Test evaluation:

The measured efficiency of EG PELLET 10, EG PELLET 15, EG PELLET 40, (Pellets - C1) is **higher** than required.

Measurement results: EG PELLET 10 - Pellets - C1

	Average values									
Boiler output		N	/leasure	d values		Converted values O ₂ =0%				
	O ₂ [%]	CO [ppm]	NO _x [ppm]	OGC/THC [ppm]	Dust [mg/m³]	CO [mg/MJ]	NO _X [mg/MJ]	OGC/THC [mg/MJ]	Dust [mg/MJ]	
Minimum	11.77	196	62	9	11	133	69	8	6	

Measurement results: EG PELLET 15 - Pellets - C1

		Average values								
Boiler	Measured values					Converted values O ₂ =0%				
output	O ₂ [%]	CO [ppm]	NO _x [ppm]	OGC/THC [ppm]	Dust [mg/m³]	CO [mg/MJ]	NO _X [mg/ M J]	OGC/THC [mg/MJ]	Dust [mg/MJ]	
Minimum	11.77	196	62	9	11	133	69	8	6	

Measurement results: EG PELLET 40 - Pellets - C1

	Average values								
Boiler	Measured values					Converted valuesO ₂ =0%			
output	O ₂ [%]	CO [ppm]	NO _x [ppm]	OGC/THC [ppm]	Dust [mg/m³]	CO [mg/MJ]	NO _X [mg/MJ]	OGC/THC [mg/MJ]	Dust [mg/MJ]
Minimum	10.42	286	91	8	27	169	88	6	13

Test evaluation:

The measured emission values for EG PELLET 10, EG PELLET 15, EG PELLET 40 (Pellets - C1) **do not exceed** the specified values.

Tested by: Ing. Michal Havlů Date: 07/2013 Signed:

Reviewed by: Ing. Stanislav Buchta Date: 07/2013 Signed:

Engineering Test Institute

Report No. 39-9917/T

Page 18 of 24

Accredited test

Test method:

Sample tested:

number:

1004.1* Test title:

1005.1*

Test of heat output, input and efficiency Combustion efficiency test - emissions

ČSN EN 303-5:2013

Annex C,

Deviation from Denmark, C.4.1, C.4.2

EG PELLET 10, EG PELLET 15,

EG PELLET 40

Measuring equipment used:

Chapter III - Measuring and test equipment

Test results:

Requirement		Requirement specification	Test evaluation		
Boiler Efficiency		ČSN EN 303- 5:2013			
According to the Danish			Pellets – C1		
	boilers for coal, coke, bio fuel	Annex C,			
or biomass shall have an eff	riciency equivalent to Class 3	Deviation from			
in EN 303-5.		Denmark ,			
Minimum efficiency	(67 + 6 log Qn) %	C.4.1	+		
For boilers above 300 kW, the	requirement corresponding to	JT. 1			
300 kW shall be used.					

Requirem	ent		Requirement specification	Test evaluation			
Emission	limits						
		anish EPA Statut ass 3 (or higher)					
			Emissi	on limit va	ilues ^a		
Chalina	Fuel	Nominal heat output	СО	OGC/ THC	Dust		Pellets – C1
Stoking	Fuel		mg/m³ at 10% O ₂		ČON EN COO		
		kW	Class			ČSN EN 303-	
			3		5:2013		
		≤ 50	5000	150	150	Annex C,	
	Biogenic	> 50 to 150	2500	100 15		Deviation from	
Manual		> 150 to 300	1200				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	≤ 50	5000	150		Denmark ,	
	Fossil	> 50 to 150	2500	_	125	C.4.2	
		> 150 to 300	1200	100			
		≤ 50	3000				+
	Biogenic	> 50 to 150	2500	80	150		+
Automatic		> 150 to 300	1200	- 50			And the second s
Automatic		≤ 50	3000	100			
	Fossil	> 50 to 150	2500	- 00	125		
		> 150 to 300	1200	80			
a Referring t	o dry exit flu	e gas, 0 °C, 1 013 mba	ar.				

Measurement results: EG PELLET 10 - Pellets - C1

Boiler output	Minimum efficiency	Measured efficiency
Minimum	74.1	90.3

Engineering Test Institute

Report No. 39-9917/T

Page 19 of 24

Measurement results: EG PELLET 15 - Pellets - C1

Boiler output	Minimum efficiency	Measured efficiency
Minimum	74.1	90.3

Measurement results: EG PELLET 40 - Pellets - C1

Boiler output	Minimum efficiency	Measured efficiency
Minimum	76.6	93.4

Test evaluation:

Measured efficiency for EG PELLET 10, EG PELLET 15, EG PELLET 40, (Pellets - C1) is higher than required.

Measurement results: EG PELLET 10 - Pellets - C1

		Average emission values								
Dailar autnut		Measured values			Converted values O ₂ =10%					
Boiler output	O ₂ [%]	O ₂ CO OGC/THC Dust		CO [mg/m³]	OGC/THC [mg/m³]	Dust [mg/m³]				
Minimum	11.77	196	9	11	292	17	13			

Measurement results: EG PELLET 15 - Pellets - C1

Doilor output		Measure	d values		Converted values O ₂ =10%		
Boiler output	O ₂ [%]	O ₂ CO OGC/THC Dust				OGC/THC [mg/m³]	Dust [mg/m³]
Minimum	11.77	196	9	11	292	17	13

Measurement results: EG PELLET 40 - Pellets - C1

Doiler output		Measured values O2 CO OGC/THC Dust [%] [ppm] [ppm] [mg/m³]				Converted values O ₂ =10%		
Boiler output	1 ~					OGC/THC [mg/m³]	Dust [mg/m³]	
Minimum	10.42	286	8	27	371	14	28	

Test evaluation:

The measured emission values for EG PELLET 10, EG PELLET 15, EG PELLET 40, (Pellets - C1) do not exceed the specified values.

Tested by:

Ing. Michal Havlů

Date: 07/2013

Reviewed by: Ing. Stanislav Buchta

Date:

07/2013

v 3.00

Engineering Test Institute

Report No. 39-9917/T

Page 20 of 24

Accredited test

1004.1* Test title: Test of heat output, input and efficiency

number:

1005.1*

Combustion efficiency test - emissions

ČSN EN 303-5:2013

Test method:

Annex C,

Deviation from Germany, C.5.1, C.5.2

Sample tested:

EG PELLET 10, EG PELLET 15, EG PELLET 40

Measuring equipment used:

Chapter III - Measuring and test equipment

Test results:

Requirement			Requirement specification	Test evaluation		
Emission limi	ts					
Table 7 – Emis	ssion limits					
The emission limits are regulated in Chapter 2, paragraphs 4, 5 and Annex 2 of the German Immission Control Ordinance "Erste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über kleine und mittlere Feuerungsanlagen - 1. BImSchV)". Boilers operated with solid fuels shall only be installed, possess the quality and be put into operation if they fulfil the following specifications of the 1. BImSchV:						Pellets – C1
	Fuel acc. to §3 (1)	Nominal output range kW	Dust g/m³	CO g/m³	ČSN EN 303- 5:2013 Annex C,	
	Numbers 1 to 3a	≥ 4 ≤ 500	0.09	1.0	Deviation from Germany, C.5.1	
	Transcis i to da	> 500	0.09	0.5	Germany, C.J. 1	
Stage 1:	Numbers 4 to 5	≥ 4 ≤ 500	0.10	1.0		
Appliances,	Trambers 4 to 0	> 500	0.10	0.5		
which will be	Number 5a	≥ 4 ≤ 500	0.06	0.5		+
installed	Number 3a	> 500	0.06	0.5		
after 22.3.2010		≥ 30 ≤ 100	0.10	0.8		
	Numbers 6 to 7	> 100 ≤ 500	0.10	0.5		
		> 500	0.10	0.3		
Stage 2:	Numbers 1 to 5a	≥ 4	0.02	0.4		
Appliances,	Numbers 6 to 7	≥ 30 ≤ 500	0.02	0.4		
which will be	Numbers 6 to 7	> 500	0.02	0.3		
installed after 31.12.2014	Numbers 8 to 13		0.02	0.4		fuole according \$3 article 1 Num

NOTE Differing from sentence 1 for firing systems (appliances) which will exclusively be fired by fuels according §3 article 1 Number 4 in the form of split logs, the limits according Stage 2 apply for firing systems (appliances) if they are installed after 31.12.2016.

Engineering Test Institute

Report No. 39-9917/T

Page 21 of 24

Measurement results: EG PELLET 10 - Pellets - C1

			Average emiss	sion values	
Dailer autout	Ме	asured values		Converted values O ₂ =13%	
Boiler output	O ₂ [%]	O ₂ CO Dust		CO [g/m³]	Dust [g/m³]
Minimum	11.77	196	11	0.212	0.009

Measurement results: EG PELLET 15 - Pellets - C1

			Average emiss	ion values		
Dailor autnut	Me	asured values		Converted values O ₂ =13%		
Boiler output	O ₂ [%]	CO [ppm]	Dust [mg/m³]	CO [g/m³]	Dust [g/m³]	
Minimum	11.77	196	11	0.212	0.009	

Measurement results: EG PELLET 40 - Pellets - C1

			Average emiss	sion values		
Dailan autout	Me			Converted values O ₂ =13%		
Boiler output -	O ₂ [%]	CO [ppm]	Dust [mg/m³]	CO [g/m³]	Dust [g/m³]	
Minimum	10.42	286	27	0.270	0.020	

Test evaluation:

The measured emission values for EG PELLET 10, EG PELLET 15, EG EG PELLET 40, (Pellets - C1) do not exceed the specified values.

Tested by:

Ing. Michal Havlů

Date: 07/2013 Signed:

Reviewed by: Ing. Stanislav Buchta

Date:

07/2013

v 3.00

Engineering Test Institute

Report No. 39-9917/T

Page 22 of 24

Accredited test number:

Test method:

Sample tested:

1004.1* Test title: Test of heat output, input and efficiency

1005.1*

Combustion efficiency test - emissions

ČSN EN 303-5:2013

Annex C

C.6 Deviation from Switzerland

EG PELLET 10, EG PELLET 15,

EG PELLET 40

Measuring equipment used:

Chapter III - Measuring and test equipment

Test results:

Requirement		Requirement specification	Test evaluation	
Clause 4.4.7, Table 7 The emission limits are reg Ordinance on Air Pollution C 814.318.142.1) of 1985-12-1 Boilers operated with woody market if they fulfil the follow the OAPC: - declarations of conformity - Figures 1, 212, 23 Annex 4 - Figures 31, 32 Annex 5 O/ Emissions for boilers opera not exceed the following limit	control ([OAPC] Side (as at 2010-07 biomass shall owing specification (Figure 20 OAPC 4 OAPC; APC.	ČSN EN 303- 5:2013	Pellets – C1	
Type of installation	Particular r (emission lim monoxide (C	equirements its) ^a for carbon O) and particu- iter (dust) Dust (mg/m ³)	Annex C C.6 Deviation from Switzer- land	
Boilers for log wood and boilers for coal, manual stoking	800	50		
Boilers for chipped wood and boilers for coal, auto- 400 60 matic stoking				
Boilers for wood pellets, automatic stoking	300	40		+
^a Referred to oxygen basis:				

Referred to oxygen basis:for boilers for natural state wood 13 % volume;

⁻ for boilers for coal 7 % volume.

Engineering Test Institute

Report No. 39-9917/T

Page 23 of 24

Measurement results: EG PELLET 10 - Pellets - C1

			Average emiss	sion values		
Deilen eutwich	Me	asured values		Converted values O ₂ =13%		
Boiler output	O ₂ [%]	CO [ppm]	Dust [mg/m³]	CO [mg/m³]	Dust [mg/m³]	
Minimum	11.77	196	11	212	9	

Measurement results: EG PELLET 15 - Pellets - C1

			Average emiss	sion values		
Dailarautout	Me	asured values		Converted values O ₂ =13%		
Boiler output	O ₂ CO [%] [ppm]		Dust [mg/m³]	CO [mg/m³]	Dust [mg/m³]	
Minimum	11.77	196	11	212	9	

Measurement results: EG PELLET 40 - Pellets - C1

	Average emission values							
D. H	Me	asured values		Converted values O ₂ =13%				
Boiler output	O ₂ [%]	CO [ppm]	Dust [mg/m³]	CO [mg/m³]	Dust [mg/m³]			
Minimum	10.42	286	27	270	20			

Test evaluation:

The measured emission values for EG PELLET 10, EG PELLET 15, EG PELLET 40 (Pellets - C1) do not exceed the specified values.

Tested by:

Ing. Michal Havlů

Date: 07/2013

Reviewed by: Ing. Stanislav Buchta

Date:

07/2013

Engineering Test Institute

Report No. 39-9917/T

Page 24 of 24

The test methods in this Report were applied without deviations, additions or exceptions.

V. <u>List of source materials</u>

The tests were performed based on Order B-46835 of 2013-06-11, Contract B-46835/39 of 2013-06-27, and Amendment to the Contract of 2013-07-22.

- ČSN EN 303-5:2013 Heating boilers Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW Terminology, requirements, testing and marking
- Instructions for assembly, installation and operation of the boiler
- A set of required drawing documentation as per ČSN EN 303-5:2013; Boiler EG PELLET 10, EG PELLET 15, EG PELLET 40

The persons named below are accountable for the accuracy of the above-specified data:

Ing. Stanislav Buchta
Head of Boilers and Industrial Heat

Equipment Department

Mitan Holomek

Head of Heat and Environment-Friendly Equipment Test Station